If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12x^2+36x=0
a = -12; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·(-12)·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*-12}=\frac{-72}{-24} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*-12}=\frac{0}{-24} =0 $
| 3x÷4-42=-x÷4+12 | | 16=8.n+9 | | -15x-32=-12x+25 | | 14=2a+4 | | X*2,5x=720 | | 11y=9y+18 | | 5x-19=8x+32 | | x2−10x=24 | | 9+x+8=9+x+8 | | 1-5m+3=-1 | | x2+x=72 | | 0=-20+6x^2+10x | | 18/40=60/x | | 6a+48=-36 | | 12w=8w+36 | | 4-4x=x+14 | | 4z^2-16z+25=0 | | 8=3z+5 | | 12-3(-2x-8)=4x+1 | | 5(3^x-6)=10 | | 6x-(4x-2)=4 | | -7y-10=-3 | | 9x/81-90=108 | | 3r+-14r+13r+12r=-19 | | 6+3x-2=10 | | 3r+-14r–-13r–-5r+12r=-19 | | -(4x-5)+6x=-7(-4+2x)-7x | | 6x-3x-4x-1x=2-4-6-6 | | 2y^2=3y+2 | | -29+14p+-9p=9 | | c/7−2=4 | | 2x+12-x=90 |